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A C C E L E R A T O R  S I M U L A T I O N  PA C K A G E
W H A T:  S Y N E R G I A

• Designed for range of computing resources 

• Laptops and desktops 
• Clusters 
• Supercomputers 
• GPU/Intel MIC  

acceleration platforms 

• Beam dynamics 

• Independent-particle 
• Collective effects



S Y N E R G I A
W H O :  P E R S O N N E L

is developed and maintained by the 

A C C E L E R AT O R  S I M U L AT I O N  G R O U P  
S C I E N T I F I C  C O M P U T I N G  D I V I S I O N  

F E R M I L A B

James Amundson, Paul Lebrun, Qiming Lu, Alex Marcidin,  
Leo Michelotti (CHEF), Chong Shik Park, (Panagiotis Spentzouris),  

and Eric Stern

ComPASS 
A SciDAC project



P H Y S I C S
W H A T:  S Y N E R G I A

• Single-particle physics 

• Provided by CHEF C++ library 
• Direct symplectic tracking, and/or arbitrary-order polynomial maps 

• Apertures 

• Collective effects (single and multiple bunches) 

• Space charge 
• Wake fields 
• Electron cloud, Beam-beam to be developed



T E C H N I Q U E S
W H A T:  S Y N E R G I A

• Split-Operator 

Allows to approximate the evolution operator for a time t by 

!

• Particle-in-Cell 

Allows to simulate the large number of particles in a bunch (typically 
O(1012)) by a much smaller number of macro-particles (O(107)). 
Collective effects are calculated using fields calculated on discrete 
meshes with O(106) degrees of freedom

single- 
particle  
optics

collective 
effects

split-operator 
methods

H=Hsp H=HcollH=Hsp+Hsp



PA R A L L E L  S C A L I N G
W H A T:  S Y N E R G I A
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Single-bunch strong scaling 
16 to 16,384 cores 

32x32x1024 grid, 105M particles
Weak scaling from  
64 to 1024 bunches 

8192 to 131,072 cores

Weak scaling from  
1M to 256M particles 
128 to 32,768 cores

Benchmarks on ALCF's  
Intrepid (BG/P) and Mira (BG/Q)



P R O D U C T I O N
W H A T:  S Y N E R G I A



• Synergia 1 was a combination of 
IMPACT (F90) and CHEF (C++) + 
fronted (Python) 

• Synergia 2 started as a proof-of-
concept for a Python driver. 
Design heavily influenced by 
IMPACT and Fortran. Evolved its 
own C++ space charge solvers 

• Synergia 2.1 developed into a 
robust, pure-C++ class structure 
with a Python-C++ interface

W H A T:  S Y N E R G I A

E V O L U T I O N



W H Y  P Y T H O N ?
S Y N E R G I A

• Realistic accelerator simulations require a very complicated 
description of simulation parameters 

• Using Python as a driver gives the end user access to a full 
programming language to use in simulation description 

• We did not have to develop and maintain a new language 
• End users do not have to learn YASPL (yet another single-purpose 

language) 

• Capable of creating dynamic simulations including time-
varying machine parameters and active feedback



E X A M P L E  1  —  A C T I V E  D A M P I N G

W H Y  P Y T H O N

Toy example of real-world application

A C C E L E R AT O R   
R I N G

Beam Position  
Monitor

Momentum  
Kicker

x

Counteract instabilities induced by wakefield



E X A M P L E  1  —  A C T I V E  D A M P I N G

W H Y  P Y T H O N



E X A M P L E  2  —  M U 2 E

W H Y  P Y T H O N

• Real example of real-world application 

• Resonant extraction scheme for mu2e  
experiment at Fermilab 

• Extraction for experiment requires 
ramping of magnet strength to move 
selected particles onto resonance



E X A M P L E  2  —  M U 2 EW H Y  P Y T H O N



W H Y  N O T  P Y T H O N ?
S Y N E R G I A

Portability 
Shared libraries 

Everyone says they support shared libraries. 
In practice, shared versions of installed 
libraries rarely available on HPC platforms 

Cross-compilation of Python

Package dependencies  
of Synergia

Debugging / Profiling 
There are tools which support the 

mixed Python-C++ application, 
but choices are very limited



C + +  C O R E  C L A S S E S

S Y N E R G I A

Bunch, Lattice, Propagator, 
Steps, Operators, Actions, 
Diagnostics, and etc. C O L L E C T I V E

I N D E P E N D E N T

P R O PA G AT O R B U N C H
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A P P L I E S L AT T I C E

Multiple dependencies on Boost: 
MultiArray, shared_ptr, 
Filesystem, Test, Python, Spirit 
and Serialization

O N



P Y T H O N - C + +  I N T E R F A C E

S Y N E R G I A

Boost Python: expose C++ interfaces to Python

• Classes can be wrapped straightforwardly, preserving inheritance 
relations. Python classes can inhered from C++ classes 

• C++ classes can call inherited methods in Python classes through 
callbacks 

• Overloaded C++ signatures can be translated to Python with a 
minimum of effort 

• Classes and shared pointers to classes can be interchanged 
transparently at the Python level



P Y T H O N - C + +  I N T E R F A C E

S Y N E R G I A

• C++ code looks like C++ code 

• Python code looks like Python code 

• C++ containers can be converted to native Python 
containers with ease 

• std::vector and std::list ==> Python list 
• Boost.MultiArray ==> numpy arrays 

• Minimal overhead, no need to copy the underlying data



P Y T H O N - C + +  I N T E R F A C E

S Y N E R G I A

• MPI communicators are handled through a thin wrapper in  
C++ called Commxx 

• In first version of Synergia mpi4py communicators are 
convertible to/from Commxx objects 

• Commxx evolves to accommodate the need for serializing/
reconstructing MPI communicators 

• in python scripts, mpi4py calls MPI_Init() / MPI_Finalize()



S E R I A L I Z A T I O N

S Y N E R G I A

• Checkpointing is an important feature for large-scale simulation 
applications 

• Checkpointing by re-initialization is impractical for Synergia 
• Synergia simulations can be dynamic 
• it is really a library that end-users use to create their own applications 

• Synergia uses an object serialization scheme that allows the state of 
each of its object (including user defined Python objects derived 
from Synergia) to be written to and/or restored from disk



S E R I A L I Z A T I O N

S Y N E R G I A

B O O S T . S E R I A L I Z AT I O N P Y T H O N . P I C K L E

C + +  O B J E C T S P Y T H O N  O B J E C T S

U S E R  D E F I N E D  P Y T H O N  O B J E C T S   
D E R I V E D  F R O M  P Y T H O N  W R A P P E D  C + +  O B J E C T S

S Y N E R G I A . P I C K L E _ H E L P E R

1 .  P Y T H O N . P I C K L E :  P Y T H O N  O B J E C T  - >  P I C K L E  S T R I N G  
2 .  B O O S T . S E R I A L I Z A T I O N :  P I C K L E  S T R I N G  - >  B I N A R Y  O R  X M L  

( F U L LY  A U T O M A T E D )



S E R I A L I Z A T I O N

S Y N E R G I A

S Y N E R G I A . P I C K L E _ H E L P E R

B O O S T . S E R I A L I Z AT I O N   
I N  P R O PA G AT E _ A C T I O N S



“Python is wonderful.” 


